Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Encyclopedia ; 2(1):96, 2022.
Article in English | ProQuest Central | ID: covidwho-1818060

ABSTRACT

DefinitionA new betacoronavirus (CoV-2) is responsible for the pandemic of severe acute respiratory syndrome (SARS) that began in China at the end of 2019, today known as COronaVIrus Disease 2019 (COVID-19). Subsequent studies confirmed the human angiotensin-converting enzyme 2 (hACE2) as the main cell receptor of spike trimeric glycoprotein, located on the viral envelope, mediating the CoV-2 invasion into the host cells through the receptor-binding domain (RBD) of the spike. Computational analysis of the known experimental 3D structures of spike–ACE2 complexes evidenced distinguishing features in the molecular interactions at the RBD-cell receptor binding interface between CoV-2 and previous CoV-1. The spike represents a key target for drug design as well as an optimal antigen for RNA/viral vector vaccines and monoclonal antibodies in order to maximize prevention and therapy of COVID-19.

2.
Biomedicines ; 9(8)2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-1360723

ABSTRACT

An outbreak by a new severe acute respiratory syndrome betacoronavirus (SARS-CoV-2) has spread CoronaVirus Disease 2019 (COVID-19) all over the world. Immediately, following studies have confirmed the human Angiotensin-Converting Enzyme 2 (ACE2) as a cellular receptor of viral Spike-Protein (Sp) that mediates the CoV-2 invasion into the pulmonary host cells. Here, we compared the molecular interactions of the viral Sp from previous SARS-CoV-1 of 2002 and SARS-CoV-2 with the host ACE2 protein by in silico analysis of the available experimental structures of Sp-ACE2 complexes. The K417 amino acid residue, located in the region of Sp Receptor-Binding Domain (RBD) of the new coronavirus SARS-CoV-2, showed to have a key role for the binding to the ACE2 N-terminal region. The R426 residue of SARS-CoV-1 Sp-RBD also plays a key role, although by interacting with the central region of the ACE2 sequence. Therefore, our study evidenced peculiarities in the interactions of the two Sp-ACE2 complexes. Our outcomes were consistent with previously reported mutagenesis studies on SARS-CoV-1 and support the idea that a new and different RBD was acquired by SARS-CoV-2. These results have interesting implications and suggest further investigations.

3.
Curr Pharm Des ; 26(41): 5300-5309, 2020.
Article in English | MEDLINE | ID: covidwho-1073205

ABSTRACT

BACKGROUND: Previously human society has faced various unprecedented pandemics in the history and viruses have majorly held the responsibilities of those outbreaks. Furthermore, due to amplified global connection and speedy modernization, epidemic outbreaks caused by novel and re-emerging viruses signify potential risk to community health. Despite great advancements in immunization and drug discovery processes, various viruses still lack prophylactic vaccines and efficient antiviral therapies. Although, vaccine is a prophylaxes option, but it cannot be applied to infected patients, hence therapeutic interventions are urgently needed to control the ongoing global SARS- CoV-2 pandemic condition. To spot the novel antiviral therapy is of decisive importance and Mother Nature is an excellent source for such discoveries. METHODOLOGY: In this article, prompt high through-put virtual screening for vetting the best possible drug candidates from natural compounds' databases has been implemented. Herein, time tested rigorous multi-layered drug screening process to narrow down 66,969 natural compounds for the identification of potential lead(s) is implemented. Druggability parameters, different docking approaches and neutralization tendency of the natural products were employed in this study to screen the best possible natural compounds from the digital libraries. CONCLUSION: The results of this study conclude that compounds PALA and HMCA are potential inhibitors of SARS-CoV-2 spike protein and can be further explored for experimental validation. Overall, the methodological approach reported in this article can be suitably used to find the potential drug candidates against SARS-CoV2 in the burning situation of COVID-19 with less expenditure and a concise span of time.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
JACC Basic Transl Sci ; 6(1): 9-11, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1049808
5.
J Biomol Struct Dyn ; 40(5): 2227-2243, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-894478

ABSTRACT

COVID-19 is a novel severe acute respiratory syndrome coronavirus. Currently, there is no effective treatment and vaccines seem to be the solution in the future. Virtual screening of potential drugs against the S protein of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has provided small molecular compounds with a high binding affinity. Unfortunately, most of these drugs do not attach with the binding interface of the receptor-binding domain (RBD)-angiotensin-converting enzyme-2 (ACE-2) complex in host cells. Molecular modeling was carried out to evaluate the potential antiviral properties of the components of the medicinal herb Uncaria tomentosa (cat's claw) focusing on the binding interface of the RBD-ACE-2 and the viral spike protein. The in silico approach starts with protein-ligand docking of 26 Cat's claw key components followed by molecular dynamics simulations and re-docked calculations. Finally, we carried out drug-likeness calculations for the most qualified cat's claw components. The structural bioinformatics approaches led to the identification of several bioactive compounds of U. tomentosa with potential therapeutic effect by dual strong interaction with interface of the RBD-ACE-2 and the ACE-2 binding site on SARS-CoV-2 RBD viral spike. In addition, in silico drug-likeness indices for these components were calculated and showed good predicted therapeutic profiles of these phytochemicals found in U. tomentosa (cat's claw). Our findings suggest the potential effectiveness of cat's claw as complementary and/or alternative medicine for COVID-19 treatment.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Cat's Claw , Plants, Medicinal , Cat's Claw/chemistry , Herbal Medicine , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
JACC Basic Transl Sci ; 6(1): 1-8, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-866798

ABSTRACT

Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5ß1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5ß1 integrin (+/- ACE2) and the interaction between α5ß1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.

SELECTION OF CITATIONS
SEARCH DETAIL